A Non-Shellable 3-Sphere

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Shellable Drawings of Kn with Few Crossings

In the early 60s, Harary and Hill conjectured H(n) := 1 4b2 cbn−1 2 cbn−2 2 cbn−3 2 c to be the minimum number of crossings among all drawings of the complete graph Kn. It has recently been shown that this conjecture holds for so-called shellable drawings of Kn. For n ≥ 11 odd, we construct a non-shellable family of drawings of Kn with exactly H(n) crossings. In particular, every edge in our dr...

متن کامل

Hard-sphere-like dynamics in a non-hard-sphere liquid.

The collective dynamics of liquid gallium close to the melting point has been studied using inelastic x-ray scattering to probe length scales smaller than the size of the first coordination shell. Although the structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the dynamics, as reflected in the quasielastic scattering, are beautifully descri...

متن کامل

Criterions for Shellable Multicomplexes

After [4] the shellability of multicomplexes Γ is given in terms of some special faces of Γ called facets. Here we give a criterion for the shellability in terms of maximal facets. Multigraded pretty clean filtration is the algebraic counterpart of a shellable multicomplex. We give also a criterion for the existence of a multigraded pretty clean filtration.

متن کامل

Shellable complexes from multicomplexes

Suppose a group G acts properly on a simplicial complex Γ . Let l be the number of G-invariant vertices, and p1,p2, . . . , pm be the sizes of the G-orbits having size greater than 1. Then Γ must be a subcomplex of Λ = Δl−1 ∗ ∂Δp1−1 ∗ · · · ∗ ∂Δpm−1. A result of Novik gives necessary conditions on the face numbers of Cohen–Macaulay subcomplexes of Λ. We show that these conditions are also suffi...

متن کامل

A Note about Shellable Planar Posets

We will show that shellability, Cohen-Macaulayness and vertexde composability of a graded, planar poset P are all equivalent with the fact that P has the maximal possible number of edges. Also, for a such poset we will find an R−labelling with {1, 2} as the set of labels. Using this, we will obtain all essential linear inequalities for the flag h−vectors of shellable planar posets from [1]. AMS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1985

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(85)80026-3